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Abstract

In particle methods, an accuracy degradation can occur because of the distortion of the element positions. A solution
consists in the periodic re-initialization of the particles onto regular locations, at the nodes of a lattice. This so-called redis-
tribution works by the interpolation of particle quantities. The present work considers the design of redistribution schemes
on general lattices and in particular on lattices with a higher level of symmetry than the usual cubic lattice. Such lattices
allow schemes which are more compact and more isotropic. We test our schemes in the context of three-dimensional vortex
methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In particle methods such as the vortex element method (VEM) or smoothed particle hydrodynamics
(SPH), one is confronted with problems of integration and interpolation over the elements. In particular,
this translates into accuracy degradation when the interpolating elements get too far apart in any direction
(see [1,2,9]).

One can follow several approaches to tackle this problem. One approach consists in progressively intro-
ducing new elements in the domain. While elegant, this approach requires a costly algorithm to find the new
elements’ positions and strengths (see [4]).

The other approach is to build a whole new set of elements from the old ones. This process must take place
every few time steps in order to prevent the particle distribution from getting too distorted. This so-called
redistribution consists in interpolating the new strengths at the nodes of a new non-distorted lattice.
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This work considers the properties of redistribution schemes for a generic lattice and the construction of
schemes which display high accuracy, isotropy and in some cases, compactness. We open this paper with a brief
summary of the vortex element method in Section 2 as it constitutes a prototypical particle method and will be
the basis of our numerical tests. We then discuss the properties of redistribution schemes (Section 3) and pro-
pose two approaches for the construction of isotropic schemes in Section 4. We consider lattices with a high
degree of symmetry and derive a generalization of Monaghan [12] for the construction of high order schemes.

Our results are then applied to the design of schemes for lattices with high degrees of symmetry, such as the
hexagonal and the face-centered cubic lattices.

We close this paper with the numerical application of these schemes in the context of vortex element meth-
ods. It is shown that they carry several advantages in terms of compactness and isotropy.

2. The vortex element method

We consider three-dimensional incompressible flow and the Navier–Stokes in vorticity form
Dx

Dt
¼ ruð Þ � xþ mr2x; ð1Þ

r � u ¼ 0; ð2Þ
where uðx; tÞ is the velocity field, m is the kinematic viscosity, and x ¼ r� u is the vorticity.
The vortex element method discretizes the vorticity field with particles which have positions xiðtÞ and

strengths aiðtÞ ¼
R

V i
xdx. V i is the particle volume. The field is then recovered through
~xðx; tÞ ¼
XN

i¼1

f�ðx� xiðtÞÞaiðtÞ; ð3Þ
where f� is a smooth, usually radially symmetric, interpolating kernel.
The kernel smoothing radius � determines the finest resolved scales. As a result, if the flow distorts the par-

ticle set and the inter-particle spacing grows beyond �, the interpolation of Eq. (3) loses all accuracy and
breaks down as some power of �=h, where h is the particle spacing [1,2]. This so-called loss of overlap will affect
any smoothed particle method.

A Helmholtz decomposition is used to represent the velocity field
u ¼ r/þr� w; ð4Þ

and we use the gauge r � w ¼ 0. The function / is the scalar potential and the corresponding velocity is irro-
tational but potentially dilatational. This contribution will be kept at zero for the remainder of this paper. The
stream-function is w which is related to the vorticity by the Poisson equation
r2w ¼ �x: ð5Þ

This Poisson problem can be solved through several techniques. In the present work, we use a Green’s func-
tion approach
wðxÞ ¼
X

Gðx� xiÞaiðtÞ: ð6Þ
The curl of w and its gradient then give us respectively the velocity and velocity gradient fields which are
needed for the evolution equations of the particles positions and strengths. This problem is a N 2-complex
problem, which can be made tractable with a fast multipole method [5,13,17].

In three dimensions, the particle discretization of the vorticity field ~x is not necessarily divergence-free. This
spurious divergence needs to be kept at a low level. We also note that x ¼ r� u is clearly solenoidal; this
quantity was used in the design of relaxation methods [16,10] and allows the definition of a divergence error
Ediv ¼
Z

~x� xj j2 dx: ð7Þ
In addition to relaxation, it has been shown [2] that the choice of the evaluation of the stretching term in Eq.
(1) can alleviate this problem [2].
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3. Particle redistribution properties

A redistribution scheme has two components: a lattice and an interpolation function. The term lattice is
preferred to mesh because it remains a mathematical object and can span an unbounded region of R3. Con-
cretely, the lattice nodes are never stored in an array; they are generated on demand.

The interpolation rule will be characterized in terms of its smoothness, order of accuracy and support
(Fig. 1). We will introduce and generalize some results from Cottet and Koumoutsakos [2]. A central
result concerns the order of interpolation. Let us define the new particles with positions xp and strengths
ap as
Fig. 1.
circles
ap ¼
X

q

~aqW
xp � ~xq

h

� �
; ð8Þ
in terms of the interpolation function W, the regularized particle spacing h, and the old positions ~xq and
strengths ~aq.

If we consider an interpolated quantity
P

pap/ðx� xpÞ e.g. vorticity or velocity, the discrepancy we intro-
duce can be written as
EðxÞ ¼
X

p

~ap/ x� ~xp

� �
�
X

p

ap/ x� xp

� �
¼
X

p

~ap / x� ~xp

� �
�
X

q

/ x� xq

� �
W

xq � ~xp

h

� �" #

The error behavior will thus be dictated by the factor inside the square brackets, which we can express as
f ðx� ~xpÞ ¼
X

q

/ x� ~xp

� �
� / x� xq

� �� �
W

xq � ~xp

h

� �
: ð9Þ
To obtain the above expression, we have imposed
X
q

W ðx� xqÞ ¼ 1; ð10Þ
which is physically equivalent to the conservation of the extensive quantity carried by the particles, e.g. x for
the VEM, mass, momentum and energy for SPH. In order to bound f, we expand / about x� xq,
f ðx� ~xpÞ ¼
X

q

X
jbj¼1���1

ð�1Þjbj xq � ~xp

� �b
@b/ðx� xqÞW

xq � ~xp

h

� �
; ð11Þ
where b ¼ b1 � � � bn are n-tuples with jbj ¼ b1 þ � � � þ bn. It is readily seen from this last expression that the
moments of W will characterize the error behavior, i.e., if
X

q

xb
qW

x� xq

h

� �
¼ xb for 0 6 jbj 6 m� 1; ð12Þ
then
E � OðhmÞ: ð13Þ

One may refer to Cottet and Koumoutsakos [2] for a full proof.

Our work focuses on the development and study of interpolation functions W on a different family of lat-
tices. For this reason, we introduce a notation that reflects the arrangement of the new points xn ¼ hRn, in the
Redistribution in one dimension: the strength of a particle of the distorted set (open circle) is redistributed onto four nodes (solid
).
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fashion of Merserau [11] and Van De Ville et al. [15]. The columns of the matrix R are the principal directions
of the lattice. Let us also define the matrix bR ¼ ðR�1Þt which defines a dual lattice. The lattice step h can be
rescaled to unity so it will be dropped from the remainder of this section for the sake of clarity.

Let us now consider the properties of the Fourier transform of the interpolation kernel. The switch to Fou-
rier space will indeed facilitate the development of high order schemes. Theorem 7.2.1 from Cottet and Koum-
outsakos [2] and Schoenberg [14] can be generalized to multi-dimensional cases and any kind of lattice as
follows.

Theorem 1. Consider the interpolation formula
QðxÞ ¼
X

n

qRnW x� Rnð Þ;
where qRn is the weight of the point Rn. Let the interpolation function decay fast enough to satisfy the condition
W ðxÞj j 6 Ae�Bjxj; where A > 0; B > 0:
The formula is of degree m if the following two conditions on gðkÞ ¼
R

W ðxÞe�ikx dx hold simultaneously:
gðkÞ � Rj j has a zero of order m at k ¼ 0; ð14Þ
gðkÞ has zeros of order m or higher at all k ¼ 2pbRn ðn 6¼ 0Þ: ð15Þ
Proof. Let us consider the interpolation function in lattice coordinates v, V ðvÞ. By definition we have
Z
V ðgÞe�iðjþ2pnÞ�g dg ¼ bV jþ 2pnð Þ:
Following Cottet and Koumoutsakos [2], we first multiply both sides by e2pin�v and sum over n,
X
n

e2pi n�v
Z

V ðgÞe�iðjþ2pnÞ�g dg ¼
X

n

e2pi n�v bV jþ 2pnð Þ: ð16Þ
This equation can be simplified thanks to the Poisson summation formula (PSF), which reads
X
n

f ðnþ nÞ ¼
X

n

e2pi n�n
Z

f ðgÞe�2pi n�g dg: ð17Þ
The PSF can be readily applied to the function f ðnÞ ¼ V ðnÞe�ij�n on the left-hand side of Eq. (16), leaving us
with
 X

n

e�ij� v�nð ÞV ðv� nÞ ¼
X

n

e2pin�v bV jþ 2pnð Þ: ð18Þ
We now reintroduce the physical coordinates x ¼ Rv and define W as V ðvÞ ¼ W ðxÞ. We havebV ðjÞ ¼ bW ðbRjÞ=jRj and
X
n

ei j�nW x� Rnð Þ ¼ eij�v
X

n

e2pi n�v
bW bRjþ 2pbRn
� �

Rj j ;

X
n

ei k�Rn W x� Rnð Þ ¼ eik�x
X

n

e2pibRn�x
bW kþ 2pbRn
� �

Rj j ;

ð19Þ
where we let k ¼ bRj, the physical frequency. We then proceed as in Cottet and Koumoutsakos [2]: we develop
eik�Rn about 0 in the left-hand side and use the conditions (14) and (15) on the right-hand side
X

m

ijmjkm

m!

X
n

Rnð ÞmW x� Rnð Þ ¼ eik�x
bW kð Þ

Rj j þO kmð Þ ¼
X

m

ijmjkm

m!
xm þO kmð Þ:
The identification of the coefficients of k shows that the interpolation is of order m. h
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4. Isotropic and compact redistribution schemes

As we have seen above, one can act on either one of the components of a redistribution scheme, the lattice
or the interpolation function.

4.1. Hexagonal and face-centered cubic lattices

4.1.1. Properties

The face-centered cubic lattice can be introduced through mathematics or through crystallography, for
example. Let us first consider the latter perspective. A lattice can be defined in terms of a unit cell. It is the
simplest repeating unit in the crystal, has parallel opposite faces, and its edges connect equivalent points of
the lattice.

The face-centered cubic lattice bears its name from the configuration of its unit cell (see Fig. 2). It is cubic
and has additional lattice sites at the center of its faces.

The FCC lattice can also be constructed as the periodic stack of two-dimensional hexagonal lattices with
the spacing between the layers at

ffiffiffi
6
p

=3h (Fig. 3(a)). There are three hexagonal lattices in a period A, B and C;
Fig. 2. Face-centered cubic lattice: unit cell.

Fig. 3. Face-centered cubic lattice: construction with three families of hexagonal lattices.
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if B lies at the origin of the coordinate system in Fig. 3(b), A is shifted by ð�1=2;�
ffiffiffi
3
p

=6Þ and C, by
ð1=2;

ffiffiffi
3
p

=6Þ.
This construction scheme highlights an outstanding feature of this lattice: it corresponds to the packing of

spheres. As a matter of fact, the FCC lattice is one of two lattices that pack spheres the most densely. It is also
called the Cubic Close Packing lattice. The second lattice to achieve this is the Hexagonal Close Packing lattice
which is built from the packing of two families of hexagonal lattices.

On a side note, the question of finding the densest arrangement of spheres is an old and well-known prob-
lem in mathematics. Kepler (Strena sue de nive sexangula, 1611) conjectured that the CCP – or FCC – and
HCP lattices offered the densest arrangements with a density of pffiffiffiffi

18
p � 0:74048. This conjecture was studied

for centuries, starting with Gauss et al. [3] and proved only recently by Hales [6–8].
The equivalent close packing lattice in two dimensions is obviously the hexagonal one which we used in the

construction of Fig. 3(b). This lattice already has the interest of the image treatment community [11,15]. On
the one hand, it can be the pixel pattern of a sensor that will produce digital images with the same pattern. On
the other, it can be interesting to resample and work on digitized images of that nature for their treatment
because of the properties of the hexagonal lattice, e.g. edge recognition, etc.

The advantages in our framework are also abundant. A particle method, such as the VEM, may use test
and smoothing functions that have spherical–cylindrical in 2D-symmetry. The close packing property is asso-
ciated with very good symmetry and isotropy; a lattice site is surrounded in 3D by 12 equidistant neighbors,
compared to 6 for a cubic lattice. These natural properties can be beneficial in several ways:

(1) The core overlap issue: as mentioned above, the accuracy of interpolation and integration in a particle
method decreases when the inter-particle distance becomes larger in any direction than the interpolation
kernel radius. This happens in a straining field. One would expect the spatial arrangement of the FCC
lattice to help in that respect.

(2) The interaction with boundaries: The FCC lattice can be cut in four planes and still yield a hexagonal
lattice with a parameter h. The cubic lattice has only three of these planes. Such a property is of interest
in the framework of methods which have to handle boundaries. The boundaries will indeed cut through
the lattice in arbitrary directions; the more symmetry, the less noise in quantities measured in the vicinity
of the wall or at the wall.

(3) Redistribution functions: The lattice symmetries can be used to design more isotropic and compact
schemes.

The matrices R and bR for the hexagonal and FCC lattices are given in Appendices A and B respectively.

4.1.2. Interpolation functions

Due to the nature of the close packing lattices, we cannot use the tensor product of known one-dimensional
functions to interpolate the particles strengths onto the new sites. The use of the lattice coordinates would
indeed lead to a non-isotropic redistribution. The scheme construction has to be carried out in two and three
Fig. 4. The hexagonal and face-centered cubic lattices and their Voronoi cells.
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dimensions from the start. We propose two methods to build interpolation functions for the hexagonal and
FCC lattices.

4.1.2.1. Splines. In a first approach, one can use the same idea as for one-dimensional splines. It consists in
starting from the lowest order ‘‘closest-point” function and then taking successive convolutions of this func-
tion with itself. For two or three dimensions such a function is also called the indicator function of the Voronoi

cell C [15] and is defined as
vðxÞ ¼
1; x 2 C;

1=mx; x 2 @C;
0; x 62 C;

8><>: ð20Þ
where mx is number of lattice sites which that position is equidistant to (i.e., in three dimensions, 2 on a face, 3 or
more on an edge, etc.). By definition, the tiling of this function over the lattice sites forms a partition of unity (see
Fig. 4) and by consequence, the volume of those cells is

R
vðxÞdx ¼ jRj. We define the functions Fm as
F0 ¼ vðxÞ; ð21Þ

Fm ¼ Fm�1 � F0=

Z
F0 dx; ð22Þ
where we introduced the following notation for the convolution
ðf � gÞðxÞ ¼
Z

f ðn� xÞgðnÞ dn:
One sees that all the Fm’s will too form a partition of unity. Interestingly enough, the functions for m P 1
show second order accuracy. The Fourier transform of F0 is a sine function [15]; it vanishes at the dual lattice
sites except the origin, bF0ð2pbRnÞ ¼ j detðRÞjdn. bF1 and its successors will therefore present the second order
roots at the lattice sites necessary for second order interpolation.

An analytical construction scheme is described in Van De Ville et al. [15] for the hexagonal lattice but it
serves a purpose different from ours. The construction therein is used to build increasingly smooth splines with
a growing support whereas we are more interested in increasing the order of the redistribution (Eq. (12)) and
in keeping the support small, thus preventing the creation of too many new elements.

4.1.2.2. Compact schemes. The nature of the FCC and hexagonal lattices allows the design of simple second
order schemes, represented by a piecewise linear function. In 2D, this yields the simple scheme represented in
Fig. 5(a). In the three-dimensional case, the interpolation construction is a bit more tedious. To keep the
scheme compact and follow the hexagonal lattice example, we need to consider redistribution inside the tet-
rahedrons and the octahedrons that constitute the face-centered cubic lattice. In a tetrahedron, the function is
linear. Inside a octahedron, the function is built piecewise linear to be isotropic, second order, and remain con-
tinuous across these different regions.

These schemes (given in Appendices A and B) are arguably the most compact second order schemes. The hex-
agonal scheme redistributes onto three points. Three degrees of freedom are needed to conserve the first two
moments. In three dimensions, the FCC scheme redistributes onto four or six points when four degrees of free-
dom are needed. With their small support, good conservation properties, and relatively simple analytical expres-
sions, they constitute an interesting starting point to build smoother and higher order interpolations.

As a first step following the method described above for the splines, we take the convolution of these simple
schemes by themselves and obtain C2 schemes (Fig. 5(b)). In doing so, we increase the support of our
interpolation.

4.1.2.3. High-order schemes. The second step consists in increasing the order. In the fashion of Monaghan [12],
we use the ansatz:
eW ðxÞ ¼ AW þ Bx � rW : ð23Þ
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P. Chatelain, A. Leonard / Journal of Computational Physics 227 (2008) 3244–3259 3251
The generalization of this result to several dimensions and any type of lattice will be facilitated in Fourier
space. Let us assume that the Fourier transform bW has, as described in Theorem 1, a zero of order m at
the origin and zeros of order p P mþ 2 at the sites of the dual lattice. An example of such a function is
the second order C2 hexagonal function, for which m ¼ 2 and p ¼ 4 (Fig. 6). We can use this m-order scheme
to build a ðmþ 1Þ-order scheme:
eW ðxÞ ¼ ð1þ n
m
ÞW þ 1

m
x � rW : ð24Þ
e
Proof. Let us consider the Fourier transform of W ,
ceW ¼ F AW þ Bx � rWð Þ:

Using the transform properties of gradients, this becomes
ceW ¼ A bW þ B irkð Þ � F ðrW Þ ¼ A bW þ B irkð Þ � ik bW� �

¼ A bW � B rk � kð Þ bW � Bk � rk
bW

¼ ðA� nBÞ bW � Bk � rk
bW ; ð25Þ
where rk denotes the gradient in Fourier space and n ¼ rk � k is the number of dimensions.
Fig. 6. Fourier transforms of the second order hexagonal schemes.
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We will now solve for A and B to meet condition (14). bW � jRj and k � r bW both have a zero of order m at
zero. In order to have c~W ð0Þ ¼ jRj, we need to impose
A� nB ¼ 1: ð26Þ

We can increase the order of that root. Developing Eq. (25) about k ¼ 0, we get
ceW ðkÞ ¼ jRj þ ð�1Þm Mm

m!
km � Bk � r ð�1Þm Mm

m!
km

� �
þO kmþ1

� �
¼ jRj þ ð�1Þm Mm

m!
km � Bð�1Þm Mm

ðm� 1Þ! km þO kmþ1
� �

; ð27Þ
where m is a m-tuple, 1 < mi < n, km ¼ km1
km2
� � � kmp , and summation over mi is implied. The symmetry of the mth

derivatives tensor was also used. If one chooses B ¼ 1=m, the extremum at zero will be of order mþ 1.
Finally, the condition (15) will be satisfied as well because the term, �Bk � r bW still has zeros of order

p � 1 P mþ 1 at all the dual lattice sites bRn. h

Using this result for the second order C2 functions for the hexagonal and FCC lattices, we obtain the
schemes shown in Fig. 7(a) and Fig. 8(a). We see that along with a more compact support (12 and 40 points,
respectively), the Hex and FCC schemes show better isotropy than their counterparts on a cubic lattice (Figs.
7(b) and 8(b)) built from the tensor product of 1D schemes.
Fig. 7. Third order schemes in the Hexagonal (H 03) and cubic (M 0
4) lattices.

Fig. 8. Third order schemes in the FCC (F 03) and cubic (M 0
4) lattices.
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It is interesting to realize that this order improvement could also be applied to a second order scheme in
a cubic lattice. This will obviously yield a scheme different from a tensor product of third order schemes.
Let us consider the M 0

4 scheme in two dimensions. Built from the tensor product of one-dimensional
schemes, it is
M 0
4ðx; yÞ ¼

3

2
M4ðxÞ þ

1

2
x

dM4

dx
ðxÞ

� �
3

2
M4ðyÞ þ

1

2
y

dM4

dy
ðyÞ

� �
:

Now applying the above construction in 2D to the scheme M4ðx; yÞ, we get
M 0
4 isoðx; yÞ ¼ 2M4ðxÞM4ðyÞ þ

1

2
ðx; yÞ � r M4ðxÞM4ðyÞð Þ

¼ M 0
4ðx; yÞ � ðM 0

4ðxÞ �M4ðxÞÞðM 0
4ðyÞ �M4ðyÞÞ: ð28Þ
This scheme has the same order and level of continuity as the regular M 0
4, but as shown in Fig. 9, the lobes

so characteristic of the tensor product have disappeared. One inconvenience though is the behavior of the
scheme at the origin. The scheme does not reach the unit value, M 0

4 isoð0; 0Þ ¼ 8
9
. This is also true to a lesser

degree for the third order FCC scheme, F 03. The value at 0 is 0.95. The third order hexagonal scheme does
reach 1.

These two schemes therefore redistribute a particle already at a lattice site onto several sites, creating a
slightly weaker particle surrounded by weak particles with positive and negative weights.

5. Application

5.1. Implementation

While the hexagonal functions could all be derived analytically, the high order FCC functions had to be
computed. The convolution of the C0 scheme by itself and the gradient of Eq. (24) were computed in Fourier
space. We then switched back to physical space to generate a look-up table.

5.2. Vortex rings reconnections

Our test consists in two vortex rings of equal circulation and geometry in an offset collision (Fig. 10). This
configuration initially stretches the rings which align with each other. Reconnections then happen at four
Fig. 9. Isotropic third order scheme in the cubic lattice M 0
4 iso.



Fig. 10. Collision of two vortex rings with an offset: iso-surface of vorticity jxj ¼ 0:1 max jxðt ¼ 0Þj.
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corners (Fig. 10); simultaneously, the secondary structures made of the aligned filaments stretch. This simple
configuration subjects the set of particles to deformations; the vorticity vector undergoes re-orientation and
stretching in the reconnection regions. The influence of the lattice and of the redistribution can be controlled
in several ways. The Courant number based on the velocity gradient and the redistribution frequency indeed
determine how much distortion is allowed in our set.

For the remainder of the discussion, our results are made dimensionless in the following manner t ¼ Ct0

R2 ,
x ¼ x0

R, x ¼ R2x0

C where t0, x0, x0 are dimensional. The flow is characterized as follows. The Reynolds number
based on the circulation of the rings is ReC ¼ C=m ¼ 1000. The core radius is 0.1. The initial offset and sepa-
ration are respectively 0.5 and 0.25.

The numerical parameters were chosen as Dt ¼ 0:32, hFCC ¼ 0:06 and hCUB ¼ 0:054. We note that
hFCCjRFCCj ’ hCUBjRCUBj to have a similar density of elements in both lattices. The problem is quite under-
resolved, the vorticity-based mesh Reynolds number being Reh ¼ jxjmaxh2=m ’ 40.

A redistribution is applied every five time steps. A random perturbation is applied to the lattice orientation
and its origin to avoid any bias due to the geometry of the problem. The redistribution frequency corresponds
to a large strain, which can be evaluated as
5Dtjxjmax � 20: ð29Þ

We first note that the number of particles grows similarly for both schemes (see Fig. 11). This is an effect of the
cutoff used to avoid the creation of weak particles; this cutoff kills more particles in the case of M 0

4. For the
divergence error, we observe different behaviors. Both schemes start from a nearly identical value of the diver-
gence error. Before any redistribution, the error grows for the cubic lattice and stays stationary for the FCC
one. It then jumps at the first redistribution at t ¼ 1:6, with a larger jump for the M 0

4 scheme. This difference
finally decreases as the error creeps up for both schemes.



0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

4x 10
5

t
0 2 4 6 8 10

10

10

10

10

t

Fig. 11. Collision of two vortex rings with an offset: number of particles and divergence error, FCC03 (solid) and M 0
4 (dashed)

schemes.

P. Chatelain, A. Leonard / Journal of Computational Physics 227 (2008) 3244–3259 3255
6. Conclusions

We have introduced the first representatives of a new family of interpolation schemes based on the hexag-
onal and face-centered cubic lattices. Our schemes have two outstanding features:

(1) Thanks to the many symmetries of the underlying lattices, one can design schemes which are more com-
pact than the equivalent ones in a cubic lattice. This results in the creation of fewer particles and a tighter
halo of new particles around the set of old particles.

(2) Symmetry is also beneficial to the overlap of the particle cores and allows for better communication
between the particles, even under stretching. In the context of vortex methods, we have observed a sig-
nificant reduction in the divergence error in the case of high Reh.

Appendix A. Hexagonal lattice

The sites of the hexagonal lattice are described as xn ¼ Rn, where the matrix R’s columns contain the lattice
directions
R ¼
1 1=2

0
ffiffiffi
3
p

=2

� �
:

There is a dual lattice, defined by the matrix
bR ¼ R�1
� �t ¼

1 0

�
ffiffiffi
3
p

=3 2
ffiffiffi
3
p

=3

� �
:

These two lattices and their coordinate systems are presented in Fig. A.1.
A.1. Splines

The family of splines are built from the indicator function of the Voronoi cell
F0 ¼
1; if jx̂j < 0:5 and jŷj < 0:5 and jx̂� ŷj < 0:5;

0; otherwise;

	
ðA:1Þ
where x̂ and ŷ are dual lattice coordinates. We then take successive convolutions of F0 with itself; we get for
F1



Fig. A.1. The hexagonal lattice, its dual lattice and their coordinate systems.
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F1 ¼
4

3

ð1� x̂0Þð1� x̂0 � ŷ 0Þ; if jx̂0 þ ŷ0j < 1 and jx̂0j > 0:5;

ð1� ŷ0Þð1� x̂0 � ŷ0Þ; if jx̂0 þ ŷ0j < 1 and jŷ 0j > 0:5;

ð1� ŷ 0Þð1� x̂0 � ŷ 0Þ � ð0:5� ŷ0Þ2
� �

; if jx̂0j 6 0:5 and jŷ0j 6 0:5;

0; otherwise:

8>>>><>>>>: ðA:2Þ
For conciseness, we use variables x̂0, ŷ 0 that map all the sextant onto the first one
x̂0 ¼
jx̂� ŷj; if x̂ŷ > 0 and jx̂j > jŷj;
jx̂j; otherwise;

(
ðA:3Þ

ŷ 0 ¼
jx̂� ŷj; if x̂ŷ > 0 and jx̂j <¼ jŷj;
jŷj; otherwise:

(
ðA:4Þ
A.2. Compact schemes

The compact schemes are expressed in the lattice coordinate system. For the C0 scheme, we have
HC0 ¼
1� ~x0 � ~y 0; if j~x0 þ ~y0j < 1;

0; otherwise;

	
ðA:5Þ
where once again we use a mapping to work in the first sextant – the first quarter in the hexagonal lattice coor-
dinate system
~x0 ¼
j~xj; if ~x~y > 0;

j~xþ ~yj; otherwise

(
ðA:6Þ

~y 0 ¼
j~yj; if ~x~y > 0;

minðj~xj; j~yjÞ; otherwise:

(
ðA:7Þ
The C2 scheme is found by convolution of the C0 scheme by itself
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HC2 ¼ 1

12

ð~x0 � ~y0 � 2Þð~x0 þ ~y 0 � 2Þ3; if j~x0 þ ~y0j < 2 and ~x0 > 1;

ð~y0 � ~x0 � 2Þð~x0 þ ~y 0 � 2Þ3; if j~x0 þ ~y0j < 2 and ~y 0 > 1;

ð6þ 12~x0~y 0ð~x0 þ ~y0 � 1Þ
�ð~x02 þ ~y02Þð12þ 2~x0~y 0Þ; if j~x0 þ ~y0j < 2 and ~x0 þ ~y0 < 1

þ8ð~x03 þ ~y03Þ � ~x04 � ~y04Þ;
ð10� 12ð~x0 þ ~y0Þ þ 12~x0~y 0

�2~x0~y0ð~x02 þ ~y02Þ; if j~x0 þ ~y0j < 2 and ~x0 þ ~y0 P 1

þ4ð~x03 þ ~y03Þ � ~x04 � ~y04Þ;
0; otherwise:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

ðA:8Þ
The third order scheme can then be written as
H3
C1 ¼ H2

C2 þ
1

12

ðð2ð~x02 � ~y02Þ � 4~x0 � 2~y 0Þ; if ~x0 þ ~y0j j < 2 and

ð~x0 þ ~y0 � 2Þ2Þ; ~x0 > 1;

ðð2ð~y02 � ~x02Þ � 4~y0 � 2~x0Þ; if ~x0 þ ~y0j j < 2 and

ð~x0 þ ~y0 � 2Þ2Þ; ~y0 > 1;

ð�~xj~x2ð12� 3~y � 2~xÞ þ 12~xð~y � 1Þ
�~yð6� 6~y þ ~y2Þj; if ~x0 þ ~y0j j < 1;

�~yj~y2ð12� 3~x� 2~yÞ þ 12~yð~x� 1Þ
�~xð6� 6~xþ ~x2ÞjÞð�~xj � 6þ 6~x2 � 2~x3

þ6~y � 3~x2~y � ~y3j; if j~x0 þ ~y0j < 2 and

�~yj � 6þ 6~y2 � 2~y3; ~x0 þ ~y 0 > 1;

þ6~x� 3~y2~x� ~x3jÞ;
0; otherwise:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðA:9Þ
Appendix B. Face-centered cubic lattice

The directions of the FCC lattice and its dual counterpart are given by
R ¼
1 1=2 1=2

0
ffiffiffi
3
p

=2
ffiffiffi
3
p

=6

0 0
ffiffiffi
6
p

=3

0B@
1CA; bR ¼ 1 0 0

�
ffiffiffi
3
p

=3 2
ffiffiffi
3
p

=3 0

�
ffiffiffi
6
p

=6 �
ffiffiffi
6
p

=6
ffiffiffi
6
p

=2

0B@
1CA: ðB:1Þ
B.1. Splines

The first spline is given by
F0 ¼
1; if jx̂j < 0:5 and jŷj < 0:5 and ĵzj < 0:5

and jx̂� ŷj < 0:5 and jx̂� ẑj < 0:5 and ĵz� ŷj < 0:5

0; otherwise

8><>: ðB:2Þ
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We then get by convolution
F1 ¼

if jx̂0jP 0:5 and

ð1� x̂0Þð1� ŷ0Þð1� ẑ0Þ; jŷ0jP 0:5 and

ĵz0jP 0:5;

ðð1� x̂0Þð1� ŷ 0Þ̂z0

þð0:5� AÞðB� ŷ 0 þ 0:5Þ2; if x̂0j jP 0:5 and

þð2=3ÞðC � ẑ0Þ3; ŷ0j jP 0:5 and

þ2ð0:5� AÞð0:5� BÞðC � ẑ0Þ ẑ0j j < 0:5

þð0:5� BÞðA� x̂0 þ 0:5Þ2Þ;
ðð1� x̂0Þŷ0ẑ0 þ ð1:5� 2x̂0 þ ŷ 0Þð0:5� ŷ0Þẑ0
þ2ð0:5� x̂0 þ ẑ0Þð0:5� ŷ0 þ ẑ0Þð0:5� ẑ0Þ; if jx̂0jP 0:5 and

þð1� x̂0 þ ŷ 0Þð0:5� ẑ0Þ2

�2ð0:5� ẑ0 � ðŷ0 � ẑ0Þ=3Þðŷ0 � ẑ0Þ2Þ
if jx̂0j < 0:5;

CDð1� x̂0Þ; jŷ0j < 0:5 and

ĵz0j < 0:5 and

ðŷ 0 � x̂0Þ 6 �0:5

ðð1� x̂0Þŷ0ẑ0
þð1:5� 2x̂0 þ ŷ0Þð0:5� ŷ 0Þ̂z0; if jx̂0jP 0:5 and

þ2ð0:5� AÞð0:5� BÞðC � ẑ0Þ; jŷ0j < 0:5 and

þð1� x̂0 þ ŷ 0ÞðC � ẑ0Þ2; ĵz0j < 0:5 and

�2ðC � ẑ0 � B=3ÞB2Þ; ðŷ 0 � x̂0Þ > �0:5;

0; otherwise;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðB:3Þ
where the variables x̂0, ŷ0, ẑ0 are the dual lattice variables reordered in decreasing order x̂0 P ŷ0 P ẑ0 and the
variables A, B and C are defined as
A ¼ x̂0 þ C � ẑ0 � 0:5; ðB:4Þ
B ¼ x̂0 þ C � ẑ0 � 0:5; ðB:5Þ
C ¼ minð1þ ẑ0 � ŷ0; 1þ ẑ0 � x̂0; 0:5Þ; ðB:6Þ
D ¼ minð1þ ŷ0 � x̂0; 0:5Þ: ðB:7Þ
B.2. Compact schemes

We switch back to the lattice coordinates ~x, ~y, ~z
FCC1 ¼

1� 0:5ðj~x0 þ ~y 0j þ j~y 0 þ ~x0j þ j~x0 þ ~z0jÞ; if ~x~y~zð~xþ ~y þ ~zÞ > 0;
1
6
ð1þ 3ð1� ðjŷ0j þ ĵz0jÞÞ; if ~x~y~zð~xþ ~y þ ~zÞ < 0 and

þ2j1� ðjŷ0j þ ĵz0jÞj ~y~z > 0;

�jx̂0 þ ẑ0j � jx̂0 þ ŷ 0jÞ;
1
6
ð1þ 3ð1� ðĵz0j þ jx̂0jÞÞ if ~x~y~zð~xþ ~y þ ~zÞ < 0 and

þ2j1� ðĵz0j þ jx̂0jÞj ~x~z > 0;

�jŷ0 þ x̂0j � jŷ 0 þ ẑ0jÞ;
1
6
ð1þ 3ð1� ðjx̂0j þ jŷ0jÞÞ if ~x~y~zð~xþ ~y þ ~zÞ < 0 and

þ2j1� ðjx̂0j þ jŷ0jÞj ~x~y > 0;

�ĵz0 þ ŷ0j � ĵz0 þ x̂0jÞ;
0; otherwise:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

ðB:8Þ
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FCC3 was obtained numerically by the convolution of FCC1 by itself. The high order FCC03 was then com-
puted from the combination of FCC3 with its gradient. These two operations were carried out in Fourier
space.
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